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Abstract

This paper concerns the design of distributed algorithms for sharing network band-
width resources among contending flows. The classical fairness notion is the so-called
max-min fairness; F. Kelly [8] has recently introduced the alternative proportional fair-
ness criterion; we introduce a third criterion, which 1s naturally interpreted in terms of
the delays experienced by ongoing transfers. We prove that fixed size window control can
achieve fair bandwidth sharing according to any of these criteria, provided scheduling
at each link is performed in an appropriate manner. We next consider a distributed ran-
dom scheme where each traffic source varies its sending rate randomly, based on binary
feedback information from the network. We show how to select the source behaviour so
as to achieve an equilibrium distribution concentrated around the considered fair rate
allocations. This stochastic analysis is then used to assess the asymptotic behaviour of

deterministic rate adaption procedures.

1 Introduction

In a network like the Internet where a majority of traffic is generated by the transfer of
“elastic” documents (files, Web pages, ...), user perceived performance depends critically
on the way bandwidth is shared between concurrent flows. The objective is generally to use
all available bandwidth to the full while maintaining a certain “fairness” in the allocations
attributed to different flows. The most common understanding of fairness in a network is
max-min fairness as defined, for example, in [2]: rates are made as equal as possible subject
only to the constraints imposed by link capacities. In fact, there appears to be no clear
economic reason why max-min sharing should be preferred over some other bandwidth

allocation. More rational objectives would be to maximize overall utility accounting for
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costs and perceived value or to minimize the expected response time of any transfer. In this
paper we discuss possible bandwidth sharing objectives and the design of the flow control
algorithms by which they can be achieved. Although we consider here that the network
handles a fixed set of flows, it should be noted that bandwidth sharing is generally performed
in the context of randomly varying demands as data transfers begin and end. Preliminary
investigations on the impact of this random traffic are described in [10].

The appropriateness of the max-min allocation has already been questioned by Kelly
[8] who argues that bandwidth should rather be shared so as to maximize an objective
function representing the overall utility of the flows in progress. Assuming a logarithmic
utility function where the value of a flow increases with allocated bandwidth A in proportion
to log A results in so-called “proportional fairness”. An alternative utility function with
decreasing gradient is (—1/A) leading to the bandwidth sharing objective of minimizing
the sum of the reciprocal of rates. This objective may alternatively be interpreted as
minimizing the overall potential delay of the transfers in progress. All three objectives,
max-min fairness, proportional fairness and minimum potential delay, can be generalized
to account for deliberate bias in bandwidth allocations according to the value of weights
which might, for instance, reflect different tariff options.

While max-min fairness is often the stated objective, it is widely recognized that this
is imperfectly achieved by most network flow control protocols. In particular, it turns out
that the additive increase, multiplicative decrease congestion avoidance principle [4], as
implemented for instance in TCP [7], tends to realize proportional rather than max-min
fairness [9]. Max-min fairness can be achieved by explicit rate calculation algorithms such
as those studied in the context of the available bit rate (ABR) service class in ATM [1, 6].
However, experience suggests that it is difficult to achieve a satisfactory compromise between
simplicity of the algorithm and resulting fairness which generally depends on all nodes
implementing the same mechanisms.

Our focus in the present paper is mainly on distributed algorithms which can be imple-
mented without the complexity of explicit rate calculations, either by means of fixed end to
end window control or by rate adjustments performed by users in response to binary con-
gestion signals. The study of fixed windows allows us to investigate how bandwidth sharing
depends on the queue service discipline implemented in network nodes and to illustrate the
impact of the round trip time of the different routes. To analyse algorithms based on users
increasing and decreasing their rate in response to a binary congestion signal, we introduce
a family of (hypothetical) random search algorithms, assuming instantaneous reactions (i.e.,

negligible round trip times). The properties of this family can be used to derive the precise

www.manaraa.com



increase/decrease behaviour necessary to realize particular sharing objectives.

Practical bandwidth sharing algorithms must obviously take account of the packetized
nature of individual flows and the resulting imprecision in the notion of rate. In the present
study, however, we assume perfectly fluid flows, assimilating links to pipes and buffers to
reservoirs. The above modelling devices allow a clearer evaluation of the different bandwidth
sharing objectives and provide valuable intuition to guide the design of realistic packet-based
algorithms. Clearly, however, more extensive investigations would be necessary to bring the
present results to the stage of a practical proposition.

In Section 2 we recall the definition of max-min and proportionally fair sharing and
their weighted generalizations, and propose an alternative minimal potential delay criterion.
Some common bandwidth sharing algorithms are described in Section 3, notably the fixed
end to end window for which we show how realized sharing depends on the service discipline
implemented in network nodes. A new class of random search distributed algorithms which
can achieve a target rate allocation with an arbitrarily small level of noise in response to
a binary congestion indication is introduced in Section 4. The behaviour of these random
schemes approximates in some sense that of more realistic deterministic schemes and thus
allows an investigation of the rate sharing achieved by general increase/general decrease
schemes. Section 5 presents preliminary conclusions drawn from the results of the studied

bandwidth sharing models.

2 Bandwidth Sharing

In this section we introduce the considered network model with fluid flows and discuss

possible bandwidth sharing objectives.

2.1 Network Model

Consider a network as a set of links £ where each link [ € £ has a capacity ;7 > 0. A
number of flows compete for access to these links, each flow being associated with a route
consisting of a subset of £. We note [ € r when route r goes through link /. Let R denote
the set of routes. Note that some subsets of routes may use precisely the same set of links.

In the sequel we assume that the set of flows is fixed. We seek to allocate link bandwidth
to the set of flows to meet some sharing objective. Let A, denote the allocation of route r.

Feasible bandwidth allocations must satisfy the capacity constraints:

SA<G, lel (1)

r3I
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Figure 1: The linear network

We assume here that flows are perfectly fluid and ignore the problems of granularity due to
packet size.

To illustrate possible allocation strategies we consider the simple linear network depicted
in Figure 1. The network consists of L unit capacity links with x¢ long routes which cross
every link, and z; routes which use link [ alone, for 1 <1 < L. Denote by R the set of long
routes and by R; the set of routes using only link [.

2.2 Sharing Objectives

We now discuss possible objectives in fixing the bandwidth allocations A,. A natural ob-
jective might be to choose the A, so as to maximize the global network throughput, that
is to say, to maximize >_ A.. However, a significant drawback with this sharing objective
is that it often leads to allocations where A, must be zero for some flows. For example,
consider the linear network of Figure 1 with one route on each link and one route end to
end. For a given allocation Ag, in order to maximize the overall throughput within the
capacity constraints we should allocate A, = 1 — Ay to all the other routes giving a total
throughput of L — (L — 1)Ag. This is maximal for Ag = 0 and is then equal to L. More

acceptable sharing objectives are discussed below.

2.2.1 Max-min fairness

Max-min sharing is the classical sharing principle in the domain of data networks as dis-
cussed, for instance, by Bertsekas and Gallager [2]. The objective stated simply is indeed
to maximize the minimum of {\,} subject to the capacity constraints. More formally, the
allocations A, must be such that an increase of any A, within the domain of feasible allo-
cations must be at the cost of a decrease of some A, such that A\, < A,. This leads to the

following defining condition:

for every route r, there is at least one link [ € r such that

Z A =Crand A, = max{\., 1" 31} (2)
r!3l
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It is known that there exists only one such allocation when the number of resources and
the number of routes are both finite. The max-min fair shares A, can then be computed
by the following “filling procedure” (see e.g. [2]): start at time 0 with null rate allocations
along each route. Increase linearly in time these rate allocations. When at some time the
capacity limit is reached at some link, freeze the rate allocation of those routes that go
through this link, but proceed with this linear filling for those routes not yet constrained.
The desired rate allocation is obtained as the limit of this procedure.

The max-min allocation for the network of Figure 1 is as follows:
1
A = To+maxi>q oy
.=

L (1—1’70) for reRy, [ >1,2;>0.

] To+maxi>1 j

for r € Ry,

In the particular case where x; = 1 for ¢ > 0, the allocation to all routes is 1/2 and the

total throughput is (L + 1)/2, considerably less than the maximum L.

2.2.2 Proportional fairness

The appropriateness of max-min fairness as a bandwidth sharing objective has recently
been questioned by Kelly [8] who has introduced the alternative notion of proportional
fairness. Rate allocations A, are proportionally fair if they maximize > 5 log A, under the
capacity constraints (1). This objective may be interpreted as being to maximize the overall
utility of rate allocations assuming each route has a logarithmic utility function (the law of
diminishing returns).

Again, in the case of finitely many links and routes, the vector of proportionally fair
rate shares A, is unique. It may be characterized as follows. The aggregate of proportional
rate changes with respect to the optimum of any other feasible allocation A/ is negative,

i.e.,

Consider how this rate allocation works in the case of the linear network of Figure 1.
First it is clear, by concavity of the log function, that all routes in the same set R; must
have the same allocation. Let +; be the allocation of routes in set R; for 0 < 7 < L. We
necessarily have zgyo + z;7; = 1 for 1 < ¢ < L: this sum is the capacity used at link ¢
and must therefore be less than or equal to one; however, for any rate allocation such that
this sum is less than one, «; can be increased without violating the capacity constraints
and this results in an increase in the objective function to be maximized. It follows that to
determine the optimal rate allocation we must find the value vy which maximizes

L
11—z
zo log(vo) + Z x;log (J) .

=1 T
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Differentiating, we have that at the optimum

giving
w0t X

In the particular case where z; = 1 for 0 < ¢ < L, we deduce the allocation vo = 1/(L+1)
and v; = L/(L+1) for ¢ # 0. This corresponds to an overall throughput of L—(L—1)/(L+1).

It is clear from this example that proportional fairness penalizes long routes more severely

than max-min fairness in the interest of greater overall throughput.

2.2.3 Potential delay minimization

Recognizing that flows exist for the transfer of documents, a legitimate bandwidth sharing
objective would be to minimize the time delay needed to complete those transfers. In the
present static regime, it is more appropriate to consider a potential, rather than actual, flow
transfer time equal to the reciprocal of the rate allocation, 1/A,. In other words we would
seek the allocations minimizing the total potential delay > 1/A.. This may alternatively
be seen as a utility maximization where the utility function depends on A, through a term
proportional to 1/A,.

Consider the network of Figure 1. Easy calculations yield the following rates ; for those

routes in R;:
1

o= ———
960+\/fo?

1 i ,
V= ;> 0,i=1,..., L.
Yiwg+ /27 @

In the case where x; = 1, this reduces to v = (14 +v/L)~! and v; = VL/(1 + /L), hence

and

an overall throughput of L + 1 — VL. This criterion is thus intermediate between the two
pevious ones, in that it penalizes more (respectively, less) severely long routes than max-
min (respectively, proportional) fairness, resulting in a larger (respectively, smaller) overall

throughput.

2.2.4 Weighted shares

All three criteria admit natural generalizations with weighting factors ¢, associated with

each route r such that an increase in this weight leads to an increase in the received share

Ar.
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The general definition of max-min fairness is then:

for all r, there is at least one link [ € r such that

A, A
Z/\,,,:Cland—:max{ :rlal}. (3)
r!3 ¢7’ ¢7’/

As in the unweighted case, the corresponding allocation can be obtained through a filling
procedure, but now the speed of increase of the rate along route r should be ¢,. In the case
of a single bottleneck link, the allocation to each route is in proportion to its weight, i.e.,
we have \,/$, = constant.

A weighted version of the proportional fairness criterion is described in [8]. The rates
A, are then chosen so as to maximize ) ¢, log A.. Equivalently, for any other feasible
allocations A/, the aggregate of weighted proportional rate changes with respect to the
optimum allocation > p ¢, (AL — A;)/A. would be negative. Again, in the case of a single
link, the weighted proportionally fair allocations are such that A,/¢, = constant.

Similarly, in its weighted version, the minimum potential delay allocation is that which
minimizes Y  ¢./A.. It coincides with the two previous allocations in the case of a single
link.

The use of weights has been advocated as a means for users to express the relative value
of their traffic with the assumption that they pay more for a higher value of ¢.. Note,
however, that the variation of the optimal allocation A, with ¢, is not straightforward: the
increase in A, is approximately proportional to ¢, only when the number of routes sharing

a link is large and the individual allocations are small.

3 Classical bandwidth sharing algorithms

There are broadly two classes of adaptive bandwidth sharing algorithms which, following
ATM terminology, we refer to as “explicit rate” and “congestion indication” algorithms. A
simpler alternative is to employ a fixed end to end window on each route. Analysis of the

latter algorithm illustrates the impact on allocation fairness of queue service disciplines.

3.1 Explicit rate calculations

By employing the filling procedure described in Section 2.2.1, it would be possible for an
omniscient central controller to compute max-min fair shares for all routes and to update
allocations as the number of flows or available bandwidth changes. Such a solution is, how-
ever, clearly impractical in any moderately large network. Practical explicit rate algorithms

are based on the distributed calculation of rate allocations.
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The algorithm described by Charny et al [3] converges in a finite number of iterations
to an exact max-min fair rate allocation. The algorithm is based on users progressively
discovering their rate allocation A, by comparison with the “advertised rate” of the links
on its route. The advertised rate A; of link [ is given by the formula:

Cl - ZTEFZ AT’
ny—4gi

A=

where I'; denotes the subset of routes r > [ which are constrained (bottlenecked) by any
link other than [, g; is the number of routes in I'; and n; is the total number of routes going
through link [. The max-min allocation is characterized by the fact that A, < A; for r € T
and A\, = A; for r € [\ 1. At each step of an iterative process, the users update an estimate
of their rate allocation, setting A, to the minimum advertised rate on their route. At the
same time, the links progressively discover the members of set I'; for which A, < A;.
Alternative explicit rate algorithms, studied in the context of ABR, are outlined by
Arulambalam et al [1]. It appears difficult to find an optimal compromise between achieved
fairness, stability, robustness, speed of convergence and link utilization. Explicit rate algo-
rithms generally impose severe processing constraints on network nodes and rely for optimal

efficiency on uniform implementation throughout the network.

3.2 Congestion indication

In view of the complexity of explicit rate algorithms, most network flow control protocols
are based on simple binary indications of congestion issued independently by the network
links. In practice, the condition for defining a state of congestion may depend on buffer
occupancy, on measured average input rate or a combination of both.

By studying the impact on the sharing of a single link of various possible reactions to
the presence or absence of congestion, Chiu and Jain have demonstrated the optimality of
additive increase and multiplicative decrease algorithms [4]: in the absence of congestion,
users increase their sending rate linearly until congestion occurs and then begin to decrease
the rate exponentially. The rates of increase and decrease must be chosen to limit the
amplitude of oscillations which can lead to inefficiencies in link utilization and to ensure
rapid convergence when the population of active flows changes.

The additive increase, multiplicative decrease principle is widely implemented in propri-
etary and standardized protocols, notably in the congestion avoidance algorithms of TCP
[7]. Standard user behaviour in ABR in response to the binary congestion indication signal
is also based on this principle [1]. It is generally recognized in the ATM community that the

congestion indication is less fair than explicit rate due to the so-called “beat down” effect:
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flows routed over a long path are more often required to reduce their rate than flows on
short routes and are consequently unable to compete fairly.

According to recent results from Kelly et al, the beat down effect may simply be an-
other way of saying that congestion indication algorithms realize proportionally fair rather
than max-min fair sharing [9]. More precisely, it is shown in [9] that, ignoring the feedback
delay and assuming perfectly fluid traffic, it is possible to create weighted proportionally
fair sharing using a common multiplicative decrease factor and an additive increase rate
proportional to the required weight. In Section 4 below, we propose an alternative justifi-
cation for the observation that classical flow control algorithms lead to proportional rather

than max-min fair sharing.

3.3 Fixed end to end window control

Reliance on non—adaptive end to end windows is a feasible bandwidth sharing option when
link buffers are sufficiently large to eliminate the possibility of data loss.

Assume route r has a window of size B, (given in bytes, say) and let T, denote the
round-trip time associated with route r, excluding any queueing delay on the forward data
transfer path. In general, the use of window control leads to fluctuating rates, i.e., the A,
vary in time resulting in bursty traffic. However, for present purposes we shall assume that
the network is equipped with additional mechanisms which smooth out the bursts, enabling
the establishment of a static regime where the A. remain constant. In the assumed fluid
model, FIFO queueing is sufficient to maintain such a static regime but some further device
would be necessary to smooth out the bursts and ensure initial convergence. We do not
further pursue the search for such a mechanism, the present aim being to explore how the
fairness of the resulting allocations depend on B, and T,.. We consider here how different
sharing objectives are realized depending on the service discipline implemented in network

nodes.

3.3.1 Proportional fairness

In the case of FIFO queueing, we have the following

Theorem 1 . The fluid model under consideration, with non-adaptive end to end window
control and FIFO queueing at each link, the window and round trip time of route r being
B, and T,, respectively, has a unique static regime. The associated stationary rates A, on

each route are characterized as the unique solution to the optimization problem

max Z B, log A\, — AT, (4)
R
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under the constraints A\, > 0, >~ 5, A, < (.

Proof: Let B, denote the volume of traffic from route r currently in the buffer of
link /. In the assumed static regime, these quantities, like the A,, are constant. Now, at
any time, unacknowledged traffic emitted on route r is in one of three states: in transit
on the forward path, queued at some link or at destination with an acknowledgement in
transit on the backward path. The total volume of traffic in transit in the forward path or
whose acknowledgement is in transit on the backward path is equal to A.7T,.. We deduce

the conservation equation
ArTr + Z Bl,r = Br (5)
ler

Assuming servers do not idle, it holds that

Z/\T<C'1:>Bl7r:0f0rallr91
r3I

On the other hand, when the buffers are not empty, because of the assumed static regime

and FIFO policy, the output rates are proportional to the buffer contents, i.e.,

B ' '
Z/\T:Clﬁﬁz/\r,forallr,rlal (6)
3l Bl,r Ar

Indeed, in order to maintain the static regime, data packets from different routes should be
homogeneously interleaved in the buffer. Denote by B({) the total buffer content at link I,

i.e., B(l) = 3,5 Bi,,- Summing the previous equation over r’,

B, =\
L Cr (7)
Substituting (7) into (5) yields
/\r T, E —| =B, 8
" ler Ci ( )

where the A, and the B(l) are non-negative, and such that for all [, 3,5, A, < (Y, and
Y51 A < Cr= B(l) = 0. The Lagrangian associated with the optimization problem (4) is
(the constraints A, > 0 need not be included here):
L= B logA — AT+ > ju(Cr= Y A).
R ral ral
According to the Kuhn-Tucker theorem, the optimum is the unique vector satisfying the

constraints and such that

2L =0, reR,
pr > 05 >0 A <Cp = p, =0.

10
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The first condition reads

B,
A_ = Tr ‘I’Z,ul
r r3I

Setting p; = B(l)/C; and comparing this with (8) it may readily be verified that any vector
of rates A, which correspond to a static regime for the fluid model under consideration is
a solution of the above maximization problem. Since such a solution is unique, by strict

concavity of the objective function, there exists only one such static rate allocation. a

Remark 1 . When the round trip times are negligible, the objective function in (4) reduces
to > B, log A, so that the static rates constitute the proportionally fair rate allocation with

weights given by the window sizes.

Remark 2 . When the round trip delays are non-negligible, their impact on the A, can be
assessed from (4). Consider for instance a single link with unit capacity, shared by two routes
with associated round trip times T; and window sizes B;, 1 = 1,2. If By/T) + By/T; < 1
then one has \; = B;/T;. Otherwise, tedious but straightforward calculations yield

2By

A =
! Ty —To+ By + By + /(I + T2 — By — By)2 + 4(B 1, + BTy — Th 1)

and a similar expression holds for Xs.

3.3.2 Maximum throughput

Theorem 1 relies on the fact that the scheduling policy is FIFO. However, when one uses
another policy instead, it turns out that an analogous result often holds, with a suitably

modified objective function. This is illustrated by the following theorem.

Theorem 2 . In the setting of Theorem 1, if each link implements per flow queueing
with Longest Queue First (LQF) policy among queues, in any static regime of the system’s
behaviour, the corresponding stationary rates are uniquely characterized as the solution to

the optimization problem

1
maxZBr/\r - 5/\3Tr (9)
R
under the usual non-negativity and capacity constraints.

Proof: Let B, denote the amount of connection r packets backlogged at the access
of link /, in some candidate static regime and set B(l) = max,5; B;,. The policy is such

that, when B;, < B(l), one necessarily has A, = 0. When B;, = B(l), on the other hand,

11
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the policy puts a priori no constraint on the corresponding allocation A,.. The Lagrangian
associated with (9) reads

1
L= ;BW\T = AT+ 2 m(Cr= 3 M) + 3 A
)

r3I R

At the optimum, we have

AT = B, — Z,ul + 4.
ler

Identifying then the Lagrange multipliers p; with the maximal buffer contents B([), this
equation is exactly the conservation equation for packets and acknowledgements on route
r. Thus in any static regime the stationary rates A, solve (9); they therefore do not depend
on the static regime under consideration, since (9), being a strictly concave maximization

problem, has a unique solution, . a

Remark 3 . When the round trip delays T, are negligible, these stationary rates tend to

mazimize the sum of the throughputs \,., weighted by the window sizes B,.

3.3.3 Max-min fairness

A particularly interesting allocation results from the use of Fair Queueing scheduling policy.
We interpret Fair Queueing in the considered fluid system to imply equal rates for all

backlogged flows, and lesser rates for non-backlogged flows.

Theorem 3 . In the setting of Theorem 1, if at each link one implements a per flow
Fair Queueing policy, for any static system behaviour regime, the corresponding stationary
rates are uniquely defined as the max-min fair shares of the network’s resources with upper
bounds B, /T, on the A, (that is to say, the A\, are the maz-min fair rate shares in a network
identical to the one under focus where each route r crosses an additional dedicated access

link of capacity B, /T, ).

Proof: Consider the conservation equation (5). It ensures that rate A, cannot exceed
B, /T,. 1t also implies that if A\, < B,/T,, there necessarily exists some link [ € r, such
that By, > 0. For this link /, it then holds that ) 5, A, = 7, since the associated server is
non-idling. Because service at each link is according to a Fair Queueing policy, it also holds
that when B;, > 0, A\, = max,5;{\/}.

Summarizing, for all r € R, A, < B,./T,, and

Ar < B, /T, = for some [ € nz A = Cpand A\, = max{\,./}
P13l rat

Equivalently, these static rates are the max-min fair rate shares with an upper limit on A,

of B, /T,. a

12
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Remark 4 . When every round trip time T, is small when compared to the associated
window size B,., the bandwidth limits B, /T, are ineffective, so that the stationary rates are
the unweighted mazx-min fair rates. This differs from the situation encountered in Theo-
rems 1 and 2, where the window sizes have a greater impact on the stationary rates, as
they translate into weights. In order to achieve stationary rates which correspond to the
weighted maz-min fair allocation, one should implement weighted fair queueing instead of

fair queueing at each link.

3.3.4 Minimum potential delay

To realize an allocation minimizing the sum of the potential delays as considered in Section

2.2.3, we must invent a rather peculiar queueing discipline.

Theorem 4 . In the setting of Theorem 1, if at each link one implements per flow queueing
with service rate being shared between queues at the prorata of the square roots of the
corresponding buffer contents, then for any static regime of the system’s behaviour, the
associated stationary rates are uniquely characterized as the solution to the optimization

problem

B,
minz ~ + T, log A, (10)
R r

under the usual non negativity and capacity constraints, and in the domain A\, < B, /T,,

reR.

Proof: The queueing policy at the prorata of the square roots of the buffer contents
ensures that for all /, in some static regime either link / is not saturated and the B;, are

zero for all r 3 [, or it is saturated and then

Bl r
) W e G |
Zr’Sl V Bl,T’/ l

Equivalently,
B, = uA;

where

Cy

2
— (27’/9[ BlJ”)
= | =
Substituting this the conservation equation (5) yields

B, = NI+ A2, r€R (11)
ler

Consider now the optimization problem (10). It is easily checked that the objective function

to be minimized is convex in the domain A, < B, /T, (note that stationary rates necessarily

13
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satisfy this constraint) so that the Kuhn-Tucker theorem applies, allowing the following

characterization of the optimal values A,:

B, T,
—2———2;”:0, reR
Ar Ar ler

where p; is the multiplier associated with the capacity constraint at link [/, and is thus non
negative, and necessarily zero if link [ is not saturated. This expression is the same as (11),

thus completing the proof of the theorem. a

Remark 5 . With negligible round trip times, the static regime depicted in the previous
theorem realizes the minimum of Y » B./A,, and is thus the minimum potential sojourn

time allocation, with weights given by window sizes.

4 Random search and deterministic increase/decrease algo-

rithms

Consider now a generic stochastic algorithm of the Metropolis type where routes individually
adjust their sending rate according to the evolution of a random process and the assumed
instantaneous knowledge of whether a proposed increase would lead to the saturation of any
link on its path. The derived algorithms are not proposed as a practical network solution.
However, as is shown in this section, their analysis can be used to gain some insight into
the properties of deterministic algorithms such as TCP’s additive increase/multiplicative

decrease congestion avoidance mechanism.

4.1 Distributed random search algorithms

Assume each route r sends data at rate A\, = dv,., where v, is integer-valued and fluctuates
between 0 and npyax and § is a fixed bandwidth unit. The rates v, change in a Markovian
fashion, jumping from n to n — 1 with rate d,,, and from n to n+1 with rate b,, on condition
that this will not lead to capacity being exceeded at some link. First, consider the auxiliary
process where each v, evolves in a Markovian fashion, jumping from n to n—1 at rate d,, and
from n to n+ 1 at rate b,,, and this independently of the link status. Clearly, the individual
processes v, are independent and the joint process has a reversible measure proportional to

the weights

boby b, 1
/ Ny

7 (ny,...,nR :”7

(1, 1) L dy e dy,

where R = |R|. Now, the process under focus is obtained from this auxiliary process by

setting to zero those transition rates which would lead to a violation of some capacity

14
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constraint. Again by standard results for reversible Markov processes, a stationary measure
for this process is then given by restricting 7’ to the configurations which do not violate
any capacity constraint. The stationary distribution of the v, is thus proportional to the

measure
boby - by, 1
77(”17"'7”1%) _H dl"'dnr 1;[12@157“501'

R

Different bandwidth sharing objectives can be satisfied by an appropriate choice of b,, and

d,.

4.1.1 Maximum throughput
A first choice for the parameters b, and d, is to make them independent of n: b, = b,
d, = d. The measure 7 then takes the form:

b ZR nr
(E) glzral by <Gy

Thus, when b/d becomes large, the stationary distribution concentrates on those rate allo-

cations which maximize the total throughput > 5 A,.

4.1.2 Proportional fairness

A second choice consists in setting b, = (n+1)%, n > 0, and d,, = (n —1)%, n > 1, for some

parameter ¢ > 0. The measure 7 then reads

expa Z logn, H 12@1 <Oy
R L

Thus, when the parameter a increases, the stationary distribution concentrates on the rate
allocations which maximize the sum of the logarithms of the rates, within the capacity

constraints, i.e., the distribution concentrates on the proportionally fair rate allocations.

4.1.3 Max-min fairness

In order to approximate max-min fair rate sharing we select b, and d, such that for all
n> 1, by_i/d, = exp AM~" where A and M are two positive parameters. We could, for

instance, set b, = exp AM~"~1 and d,, = 1. We then have

Ny
i
w(ny,...,nR) X epoZA t le [Sn, <Oy
R i=1 c T
Assume now that M has been chosen sufficiently large so that, for any feasible rate allocation

on., M > n,. Consider two feasible allocations {én,}and {dm,}, such that for some rg,

Ny, < My, and for any other r, either n, < m, or m, > n,,. In view of the definition of
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max-min fairness, if {dm,} is the max-min fair rate allocation, for any other rate allocation
{én,} there exists such an rg. The ratio of probabilities #(mq,...,mg)/7(n1,...,nR) is
easily seen to be larger than

exp{AM=mm0 _ R Z AM=1

i:mro—l—l

Thus, when A tends to infinity, this ratio also tends to infinity. In other words, the proba-
bility distribution 7 concentrates on the max-min fair rate allocation as A — oo.
4.1.4 Minimum potential delay

In order to approximate the minimum potential delay allocation, choose rates b, and d,

such that

bn—l [1 1 :| a S
=exp—a|— — =exp——, 7
dy, P n n-1 pn(n—l)7

(take for instance d,, = 1 and b, = expa/[n(n 4+ 1)] for n > 1, and dy = 0). The stationary

measure 7 is then proportional to

1
D Dl | (I
R r L

and thus concentrates as ¢ — oo on the feasible allocations which minimize the total

potential delay >~ 1/A,.

4.2 Deterministic general increase/general decrease algorithms

The above random search framework allows us to derive more practical deterministic rate

adjustments realizing particular bandwidth sharing objectives.

4.2.1 Additive increase/multiplicative decrease

We first devise rates such that the stochastic algorithm of the previous subsection mimics the
additive increase/multiplicative decrease mechanism. Our choice consists in setting d,, = n
and b, = n 4+ «/é, where « is a positive constant. When upwards transitions are feasible,
the drift for A, is constant and equal to «, producing a linear increase in the absence of
saturation. On the other hand, when upwards transitions are impossible, the drift at some
point # = nd is exactly —x, producing an exponential decay during saturation. In the limit
§ — 0, the rates evolve continuously in a deterministic fashion according to this additive
increase/multiplicative decrease mechanism.

Consider two feasible rate vectors « = {z,} = {dn,} and y = {y.} = {dm,}. We

investigate the ratio 7(z)/7(y) of the probabilities of each vector in the limit 6§ — 0. It is
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easily seen that this ratio equals

(zrta)/s-1 (yrta)/d—1
expy ¢ D logj— > logj
R\ j=z,/64+1 j=yr /641

The value of this expression is not changed on adding log § to each term log j of both sums

which may then be recognized as Riemann sums. The exponent is thus equivalent to:

Trto Yrta
5 Z/ log xdx —/ log xdz.

In the limit § — 0, the distribution 7 thus concentrates on the feasible rate configuration
which maximizes > n ff:"'a log zdz. We may conclude that, for small «, this configuration
is close to the proportionally fair rate allocation, because the objective function is then
equivalent to «> ploga,. These arguments add support to the belief that additive in-
crease/multiplicative decrease algorithms realize a proportionally fair rate sharing, as has

already been advanced by Kelly et al. [9], using a different approach.

4.2.2 General increase/general decrease.

Consider now the following deterministic control policy: rate A, increases at speed f,.(A,)
in the absence of congestion and decreases at speed ¢,(\,) under congestion. The previous
paragraph dealt with the case f,.(2) = a and ¢,(2) = x. Applying the same method yields

the following result:

Theorem 5 . The deterministic congestion avoidance algorithm with increase and decrease
Sfunctions f,. and g, for route r, r € R, has equilibrium points at those rate allocations at

which the function
/\r
Z/ i()du (12)
gr(u)

1s mazimal.

Proof: Approximate this deterministic system behaviour by that of the stochastic
algorithm of the previous subsection, where A, jumps from on to §(n+ 1) at rate (f,.(én) +
g-(6n))/é in the absence of congestion, and jumps from dn to §(n — 1) at rate g,.(én)/é.
When § tends to zero, the behaviour of this system is the same as that of the deterministic
system under focus. Let us investigate the limiting behaviour of the stationary distribution

7 as § goes to zero. Given two feasible rate allocations {A,}, {u,}, we have

r(A) Ry 5n)+gr (on) LV L (0m) + g (6m)

TSI PP P i D VIR
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As 0 — 0, recognizing Riemann sums in the exponent in the right-hand side, the latter is

equivalent to

L b e
DO Ay

so that the distribution 7 concentrates on those allocations for which > » fOAT log[(f-(u) +

g-(u))/g-(u)]du is maximal and the result of the Theorem follows. a

Remark 6 . If the objective function has a unique global mazimum in the domain of
admissible rate allocations and no other local mazimum, one would expect the deterministic
increase/decrease algorithm to converge indeed to that maximising point. However if there
are multiple local maxima, it is likely that the deterministic mechanism will get trapped in

any such local maximum.

Theorem 5 may be used either to gain insight into the nature of the equilibria achieved
by existing increase/decrease mechanisms, as in the previous paragraph, or conversely to
design new increase/decrease mechanisms with pre-specified equilibrium properties. Let
us illustrate this by devising functions f and g so that the associated equilibrium points
minimize the total potential sojourn time 3 5 1/A,. The corresponding f and g should be
such that fOA log[(f(u) + g(u))/g(u)]du = —1/u. Differentiating, we should therefore set

F(u) + g(u) = g(u) exp (13
There is a minor difficulty here: for such f and g the corresponding integral diverges
at zero. However, it is easy to extend Theorem 5 to the case where some log[(f, (u) +
gr(u))/g.(u)] fails to be integrable at zero, the result then being that the function maximised
at equilibrium has the derivative > 5 log[(f.(u) + g-(u))/g,(u)].
Returning to (13), if we want to keep the multiplicative decrease half of the TCP congestion

avoidance mechanism, we have g(u) = u, and thus

flu)=u (exp% — 1)

For large values of u, we have f(u) ~ 1/u. Assuming that to set f(u) = 1/u instead of the
above does not significantly change the system equilibrium, the following statement makes
sense: “logarithmic increase/multiplicative decrease mechanisms lead to rate shares that
minimize the total potential delay”. Logarithmic increase could be realized by increasing
the window size on route r as follows: just after the window size has been increased to n
packets, wait 2" time units before increasing it to n + 1.

One might wonder whether for appropriately chosen increase and decrease functions f

and ¢ the objective function is maximised at the max-min fair rate allocation. It turns out
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that there do not exist functions which guarantee this property to hold for an arbitrary

network configuration.

5 Conclusion

The way network bandwidth is shared between contending flows has a significant impact on
user perceived performance. We have considered a variety of bandwidth sharing objectives
including max-min fairness, proportional fairness and overall delay minimization. In the
present work we have concentrated on the protocols and distributed algorithms used to
realize these objectives for a given set of flows each having a fixed network route.

The algorithms currently used in data networks generally aim to realize max-min sharing
although precision in realizing this objective is often sacrificed in the interest of simplicity.
There is evidence that classical congestion indication algorithms based on additive increase
/ multiplicative decrease tend to produce allocations which are proportionally fair rather
than max-min fair. We have illustrated through a simple example how proportional fairness
tends to produce smaller allocations on routes using a large number of hops to the advantage
of greater overall throughput. Minimizing potential delay as a sharing objective provides
an intermediate solution between max-min and proportional fairness, penalizing long routes
less severely than the latter.

We have demonstrated that a simple fixed window flow control produces different shar-
ings depending on the scheduling discipline employed in network nodes. For example, FIFO
tends to produce weighted proportional fairness, with weights given by the respective win-
dow sizes, while fair queueing leads naturally to max-min fairness.

We have approached the problem of designing a distributed algorithm realizing a given
sharing objective through the study of a family of so-called Metropolis algorithms. The rate
of individual flows varies randomly and independently of the rate of other flows except for
the condition that transitions to infeasible states (where link capacities would be exceeded)
are barred. By appropriately choosing transition probabilities, it is possible to ensure that
the random process concentrates on the rate allocation which realizes the required sharing
objective. More practical algorithms are derived as deterministic limits of the stochastic
processes. In particular, it is shown by this means that the additive increase / multiplicative
decrease algorithm tends to realize proportional sharing, as already shown in [9]. In fact, as
in the cited work, the sharing objective is realized under the (unrealistic) assumptions that
rate adjustments in response to congestion signals are immediate and that the multiplicative
decrease factor tends to one (i.e., rate fluctuations occur in a very limited neighbourhood

of the congested state).
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To complete the study of how bandwidth sharing algorithms affect user-perceived per-
formance, it is necessary to consider the impact of random changes in the number of flows
in progress. Indeed, the bandwidth sharing algorithm has its own impact on this number
since the transfer time of a given flow (i.e., a given document) clearly depends on the rate
allocated to it. Preliminary investigations on the throughput performance of bandwidth
sharing algorithms are reported in [10]. In this context, the natural rate sharing objective
would be to minimize the number of transfers in progress and thus, by Little’s law, mini-
mize the mean transfer time. This is the motivation behind the potential delay minimization

bandwidth sharing introduced here.
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