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Bandwidth sharing: objectives and algorithmsL. Massouli�e and J. RobertsCNET-France T�el�ecom38-40 rue du G�en�eral Leclerc,92794 Issy-Moulineaux C�edex 9Franceflaurent.massoulie, james.robertsg@cnet.francetelecom.frAbstractThis paper concerns the design of distributed algorithms for sharing network band-width resources among contending 
ows. The classical fairness notion is the so-calledmax-min fairness; F. Kelly [8] has recently introduced the alternative proportional fair-ness criterion; we introduce a third criterion, which is naturally interpreted in terms ofthe delays experienced by ongoing transfers. We prove that �xed size window control canachieve fair bandwidth sharing according to any of these criteria, provided schedulingat each link is performed in an appropriate manner. We next consider a distributed ran-dom scheme where each tra�c source varies its sending rate randomly, based on binaryfeedback information from the network. We show how to select the source behaviour soas to achieve an equilibrium distribution concentrated around the considered fair rateallocations. This stochastic analysis is then used to assess the asymptotic behaviour ofdeterministic rate adaption procedures.1 IntroductionIn a network like the Internet where a majority of tra�c is generated by the transfer of\elastic" documents (�les, Web pages, ...), user perceived performance depends criticallyon the way bandwidth is shared between concurrent 
ows. The objective is generally to useall available bandwidth to the full while maintaining a certain \fairness" in the allocationsattributed to di�erent 
ows. The most common understanding of fairness in a network ismax-min fairness as de�ned, for example, in [2]: rates are made as equal as possible subjectonly to the constraints imposed by link capacities. In fact, there appears to be no cleareconomic reason why max-min sharing should be preferred over some other bandwidthallocation. More rational objectives would be to maximize overall utility accounting for1
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costs and perceived value or to minimize the expected response time of any transfer. In thispaper we discuss possible bandwidth sharing objectives and the design of the 
ow controlalgorithms by which they can be achieved. Although we consider here that the networkhandles a �xed set of 
ows, it should be noted that bandwidth sharing is generally performedin the context of randomly varying demands as data transfers begin and end. Preliminaryinvestigations on the impact of this random tra�c are described in [10].The appropriateness of the max-min allocation has already been questioned by Kelly[8] who argues that bandwidth should rather be shared so as to maximize an objectivefunction representing the overall utility of the 
ows in progress. Assuming a logarithmicutility function where the value of a 
ow increases with allocated bandwidth � in proportionto log � results in so-called \proportional fairness". An alternative utility function withdecreasing gradient is (�1=�) leading to the bandwidth sharing objective of minimizingthe sum of the reciprocal of rates. This objective may alternatively be interpreted asminimizing the overall potential delay of the transfers in progress. All three objectives,max-min fairness, proportional fairness and minimum potential delay, can be generalizedto account for deliberate bias in bandwidth allocations according to the value of weightswhich might, for instance, re
ect di�erent tari� options.While max-min fairness is often the stated objective, it is widely recognized that thisis imperfectly achieved by most network 
ow control protocols. In particular, it turns outthat the additive increase, multiplicative decrease congestion avoidance principle [4], asimplemented for instance in TCP [7], tends to realize proportional rather than max-minfairness [9]. Max-min fairness can be achieved by explicit rate calculation algorithms suchas those studied in the context of the available bit rate (ABR) service class in ATM [1, 6].However, experience suggests that it is di�cult to achieve a satisfactory compromise betweensimplicity of the algorithm and resulting fairness which generally depends on all nodesimplementing the same mechanisms.Our focus in the present paper is mainly on distributed algorithms which can be imple-mented without the complexity of explicit rate calculations, either by means of �xed end toend window control or by rate adjustments performed by users in response to binary con-gestion signals. The study of �xed windows allows us to investigate how bandwidth sharingdepends on the queue service discipline implemented in network nodes and to illustrate theimpact of the round trip time of the di�erent routes. To analyse algorithms based on usersincreasing and decreasing their rate in response to a binary congestion signal, we introducea family of (hypothetical) random search algorithms, assuming instantaneous reactions (i.e.,negligible round trip times). The properties of this family can be used to derive the precise2
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increase/decrease behaviour necessary to realize particular sharing objectives.Practical bandwidth sharing algorithms must obviously take account of the packetizednature of individual 
ows and the resulting imprecision in the notion of rate. In the presentstudy, however, we assume perfectly 
uid 
ows, assimilating links to pipes and bu�ers toreservoirs. The above modelling devices allow a clearer evaluation of the di�erent bandwidthsharing objectives and provide valuable intuition to guide the design of realistic packet-basedalgorithms. Clearly, however, more extensive investigations would be necessary to bring thepresent results to the stage of a practical proposition.In Section 2 we recall the de�nition of max-min and proportionally fair sharing andtheir weighted generalizations, and propose an alternative minimal potential delay criterion.Some common bandwidth sharing algorithms are described in Section 3, notably the �xedend to end window for which we show how realized sharing depends on the service disciplineimplemented in network nodes. A new class of random search distributed algorithms whichcan achieve a target rate allocation with an arbitrarily small level of noise in response toa binary congestion indication is introduced in Section 4. The behaviour of these randomschemes approximates in some sense that of more realistic deterministic schemes and thusallows an investigation of the rate sharing achieved by general increase/general decreaseschemes. Section 5 presents preliminary conclusions drawn from the results of the studiedbandwidth sharing models.2 Bandwidth SharingIn this section we introduce the considered network model with 
uid 
ows and discusspossible bandwidth sharing objectives.2.1 Network ModelConsider a network as a set of links L where each link l 2 L has a capacity Cl > 0. Anumber of 
ows compete for access to these links, each 
ow being associated with a routeconsisting of a subset of L. We note l 2 r when route r goes through link l. Let R denotethe set of routes. Note that some subsets of routes may use precisely the same set of links.In the sequel we assume that the set of 
ows is �xed. We seek to allocate link bandwidthto the set of 
ows to meet some sharing objective. Let �r denote the allocation of route r:Feasible bandwidth allocations must satisfy the capacity constraints:Xr3l �r � Cl; l 2 L (1)3
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link 1 link 2 link Lroutes in R0routes in R1 routes in R2 routes in RLFigure 1: The linear networkWe assume here that 
ows are perfectly 
uid and ignore the problems of granularity due topacket size.To illustrate possible allocation strategies we consider the simple linear network depictedin Figure 1. The network consists of L unit capacity links with x0 long routes which crossevery link, and xl routes which use link l alone, for 1 � l � L. Denote by R0 the set of longroutes and by Rl the set of routes using only link l.2.2 Sharing ObjectivesWe now discuss possible objectives in �xing the bandwidth allocations �r. A natural ob-jective might be to choose the �r so as to maximize the global network throughput, thatis to say, to maximize P�r. However, a signi�cant drawback with this sharing objectiveis that it often leads to allocations where �r must be zero for some 
ows. For example,consider the linear network of Figure 1 with one route on each link and one route end toend. For a given allocation �0, in order to maximize the overall throughput within thecapacity constraints we should allocate �r = 1 � �0 to all the other routes giving a totalthroughput of L � (L � 1)�0. This is maximal for �0 = 0 and is then equal to L. Moreacceptable sharing objectives are discussed below.2.2.1 Max-min fairnessMax-min sharing is the classical sharing principle in the domain of data networks as dis-cussed, for instance, by Bertsekas and Gallager [2]. The objective stated simply is indeedto maximize the minimum of f�rg subject to the capacity constraints. More formally, theallocations �r must be such that an increase of any �r within the domain of feasible allo-cations must be at the cost of a decrease of some �r0 such that �r0 < �r. This leads to thefollowing de�ning condition:for every route r, there is at least one link l 2 r such thatXr03l�r0 = Cl and �r = maxf�r0; r0 3 lg (2)4
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It is known that there exists only one such allocation when the number of resources andthe number of routes are both �nite. The max-min fair shares �r can then be computedby the following \�lling procedure" (see e.g. [2]): start at time 0 with null rate allocationsalong each route. Increase linearly in time these rate allocations. When at some time thecapacity limit is reached at some link, freeze the rate allocation of those routes that gothrough this link, but proceed with this linear �lling for those routes not yet constrained.The desired rate allocation is obtained as the limit of this procedure.The max-min allocation for the network of Figure 1 is as follows:�r = 8<: 1x0+maxl�1 xl for r 2 R0;1xl �1� x0x0+maxl�1 xl� for r 2 Rl; l � 1; xl > 0:In the particular case where xi = 1 for i � 0; the allocation to all routes is 1/2 and thetotal throughput is (L+ 1)=2, considerably less than the maximum L:2.2.2 Proportional fairnessThe appropriateness of max-min fairness as a bandwidth sharing objective has recentlybeen questioned by Kelly [8] who has introduced the alternative notion of proportionalfairness. Rate allocations �r are proportionally fair if they maximize PR log�r under thecapacity constraints (1). This objective may be interpreted as being to maximize the overallutility of rate allocations assuming each route has a logarithmic utility function (the law ofdiminishing returns).Again, in the case of �nitely many links and routes, the vector of proportionally fairrate shares �r is unique. It may be characterized as follows. The aggregate of proportionalrate changes with respect to the optimum of any other feasible allocation �0r is negative,i.e., XR �0r � �r�r � 0:Consider how this rate allocation works in the case of the linear network of Figure 1.First it is clear, by concavity of the log function, that all routes in the same set Ri musthave the same allocation. Let 
i be the allocation of routes in set Ri for 0 � i � L: Wenecessarily have x0
0 + xi
i = 1 for 1 � i � L: this sum is the capacity used at link iand must therefore be less than or equal to one; however, for any rate allocation such thatthis sum is less than one, 
i can be increased without violating the capacity constraintsand this results in an increase in the objective function to be maximized. It follows that todetermine the optimal rate allocation we must �nd the value 
0 which maximizesx0 log(
0) + LXi=1 xi log�1� x0
0xi � :5
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Di�erentiating, we have that at the optimumx0
0 = LXi=1 xix01� x0
0 ;giving 
0 = 1x0 +PLi=1 xi :In the particular case where xi = 1 for 0 � i � L, we deduce the allocation 
0 = 1=(L+1)and 
i = L=(L+1) for i 6= 0. This corresponds to an overall throughput of L�(L�1)=(L+1).It is clear from this example that proportional fairness penalizes long routes more severelythan max-min fairness in the interest of greater overall throughput.2.2.3 Potential delay minimizationRecognizing that 
ows exist for the transfer of documents, a legitimate bandwidth sharingobjective would be to minimize the time delay needed to complete those transfers. In thepresent static regime, it is more appropriate to consider a potential, rather than actual, 
owtransfer time equal to the reciprocal of the rate allocation, 1=�r. In other words we wouldseek the allocations minimizing the total potential delay P 1=�r. This may alternativelybe seen as a utility maximization where the utility function depends on �r through a termproportional to 1=�r.Consider the network of Figure 1. Easy calculations yield the following rates 
i for thoseroutes in Ri: 
0 = 1x0 +qPL1 x2jand 
i = 1xi qPL1 x2jx0 +qPL1 x2j ; xi > 0; i = 1; : : : ; L:In the case where xi � 1, this reduces to 
0 = (1 +pL)�1 and 
i = pL=(1 +pL), hencean overall throughput of L + 1� pL. This criterion is thus intermediate between the twopevious ones, in that it penalizes more (respectively, less) severely long routes than max-min (respectively, proportional) fairness, resulting in a larger (respectively, smaller) overallthroughput.2.2.4 Weighted sharesAll three criteria admit natural generalizations with weighting factors �r associated witheach route r such that an increase in this weight leads to an increase in the received share�r. 6
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The general de�nition of max-min fairness is then:for all r, there is at least one link l 2 r such thatXr03l�r0 = Cl and �r�r = max��r0�r0 : r0 3 l� : (3)As in the unweighted case, the corresponding allocation can be obtained through a �llingprocedure, but now the speed of increase of the rate along route r should be �r. In the caseof a single bottleneck link, the allocation to each route is in proportion to its weight, i.e.,we have �r=�r = constant.A weighted version of the proportional fairness criterion is described in [8]. The rates�r are then chosen so as to maximize PR �r log�r. Equivalently, for any other feasibleallocations �0r, the aggregate of weighted proportional rate changes with respect to theoptimum allocation PR �r(�0r � �r)=�r would be negative. Again, in the case of a singlelink, the weighted proportionally fair allocations are such that �r=�r = constant.Similarly, in its weighted version, the minimum potential delay allocation is that whichminimizes PR �r=�r. It coincides with the two previous allocations in the case of a singlelink.The use of weights has been advocated as a means for users to express the relative valueof their tra�c with the assumption that they pay more for a higher value of �r. Note,however, that the variation of the optimal allocation �r with �r is not straightforward: theincrease in �r is approximately proportional to �r only when the number of routes sharinga link is large and the individual allocations are small.3 Classical bandwidth sharing algorithmsThere are broadly two classes of adaptive bandwidth sharing algorithms which, followingATM terminology, we refer to as \explicit rate" and \congestion indication" algorithms. Asimpler alternative is to employ a �xed end to end window on each route. Analysis of thelatter algorithm illustrates the impact on allocation fairness of queue service disciplines.3.1 Explicit rate calculationsBy employing the �lling procedure described in Section 2.2.1, it would be possible for anomniscient central controller to compute max-min fair shares for all routes and to updateallocations as the number of 
ows or available bandwidth changes. Such a solution is, how-ever, clearly impractical in any moderately large network. Practical explicit rate algorithmsare based on the distributed calculation of rate allocations.7
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The algorithm described by Charny et al [3] converges in a �nite number of iterationsto an exact max-min fair rate allocation. The algorithm is based on users progressivelydiscovering their rate allocation �r by comparison with the \advertised rate" of the linkson its route. The advertised rate Al of link l is given by the formula:Al = Cl �Pr2�l �rnl � glwhere �l denotes the subset of routes r 3 l which are constrained (bottlenecked) by anylink other than l, gl is the number of routes in �l and nl is the total number of routes goingthrough link l. The max-min allocation is characterized by the fact that �r < Al for r 2 �land �r = Al for r 2 l n�l: At each step of an iterative process, the users update an estimateof their rate allocation, setting �r to the minimum advertised rate on their route. At thesame time, the links progressively discover the members of set �l for which �r < Al:Alternative explicit rate algorithms, studied in the context of ABR, are outlined byArulambalam et al [1]. It appears di�cult to �nd an optimal compromise between achievedfairness, stability, robustness, speed of convergence and link utilization. Explicit rate algo-rithms generally impose severe processing constraints on network nodes and rely for optimale�ciency on uniform implementation throughout the network.3.2 Congestion indicationIn view of the complexity of explicit rate algorithms, most network 
ow control protocolsare based on simple binary indications of congestion issued independently by the networklinks. In practice, the condition for de�ning a state of congestion may depend on bu�eroccupancy, on measured average input rate or a combination of both.By studying the impact on the sharing of a single link of various possible reactions tothe presence or absence of congestion, Chiu and Jain have demonstrated the optimality ofadditive increase and multiplicative decrease algorithms [4]: in the absence of congestion,users increase their sending rate linearly until congestion occurs and then begin to decreasethe rate exponentially. The rates of increase and decrease must be chosen to limit theamplitude of oscillations which can lead to ine�ciencies in link utilization and to ensurerapid convergence when the population of active 
ows changes.The additive increase, multiplicative decrease principle is widely implemented in propri-etary and standardized protocols, notably in the congestion avoidance algorithms of TCP[7]. Standard user behaviour in ABR in response to the binary congestion indication signalis also based on this principle [1]. It is generally recognized in the ATM community that thecongestion indication is less fair than explicit rate due to the so-called \beat down" e�ect:8
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ows routed over a long path are more often required to reduce their rate than 
ows onshort routes and are consequently unable to compete fairly.According to recent results from Kelly et al, the beat down e�ect may simply be an-other way of saying that congestion indication algorithms realize proportionally fair ratherthan max-min fair sharing [9]. More precisely, it is shown in [9] that, ignoring the feedbackdelay and assuming perfectly 
uid tra�c, it is possible to create weighted proportionallyfair sharing using a common multiplicative decrease factor and an additive increase rateproportional to the required weight. In Section 4 below, we propose an alternative justi�-cation for the observation that classical 
ow control algorithms lead to proportional ratherthan max-min fair sharing.3.3 Fixed end to end window controlReliance on non{adaptive end to end windows is a feasible bandwidth sharing option whenlink bu�ers are su�ciently large to eliminate the possibility of data loss.Assume route r has a window of size Br (given in bytes, say) and let Tr denote theround-trip time associated with route r, excluding any queueing delay on the forward datatransfer path. In general, the use of window control leads to 
uctuating rates, i.e., the �rvary in time resulting in bursty tra�c. However, for present purposes we shall assume thatthe network is equipped with additional mechanisms which smooth out the bursts, enablingthe establishment of a static regime where the �r remain constant. In the assumed 
uidmodel, FIFO queueing is su�cient to maintain such a static regime but some further devicewould be necessary to smooth out the bursts and ensure initial convergence. We do notfurther pursue the search for such a mechanism, the present aim being to explore how thefairness of the resulting allocations depend on Br and Tr. We consider here how di�erentsharing objectives are realized depending on the service discipline implemented in networknodes.3.3.1 Proportional fairnessIn the case of FIFO queueing, we have the followingTheorem 1 . The 
uid model under consideration, with non-adaptive end to end windowcontrol and FIFO queueing at each link, the window and round trip time of route r beingBr and Tr, respectively, has a unique static regime. The associated stationary rates �r oneach route are characterized as the unique solution to the optimization problemmaxXR Br log�r � �rTr (4)9
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under the constraints �r � 0, Pr3l �r � Cl.Proof: Let Bl;r denote the volume of tra�c from route r currently in the bu�er oflink l. In the assumed static regime, these quantities, like the �r; are constant. Now, atany time, unacknowledged tra�c emitted on route r is in one of three states: in transiton the forward path, queued at some link or at destination with an acknowledgement intransit on the backward path. The total volume of tra�c in transit in the forward path orwhose acknowledgement is in transit on the backward path is equal to �rTr. We deducethe conservation equation �rTr +Xl2r Bl;r = Br (5)Assuming servers do not idle, it holds thatXr3l �r < Cl ) Bl;r = 0 for all r 3 lOn the other hand, when the bu�ers are not empty, because of the assumed static regimeand FIFO policy, the output rates are proportional to the bu�er contents, i.e.,Xr3l �r = Cl ) Bl;r0Bl;r = �r0�r ; forall r; r0 3 l (6)Indeed, in order to maintain the static regime, data packets from di�erent routes should behomogeneously interleaved in the bu�er. Denote by B(l) the total bu�er content at link l,i.e., B(l) =Pr3lBl;r. Summing the previous equation over r0,Bl;r = �rB(l)Cl : (7)Substituting (7) into (5) yields �r 24Tr +Xl2r B(l)Cl 35 = Br (8)where the �r and the B(l) are non-negative, and such that for all l, Pr3l �r � Cl, andPr3l �r < Cl ) B(l) = 0. The Lagrangian associated with the optimization problem (4) is(the constraints �r � 0 need not be included here):L =XR Br log �r � �rTr +Xr3l �l(Cl �Xr3l �r):According to the Kuhn-Tucker theorem, the optimum is the unique vector satisfying theconstraints and such that 8<: @L@�r = 0; r 2 R;�l � 0; Pr3l �r < Cl ) �r = 0:10



www.manaraa.com

The �rst condition reads Br�r = Tr +Xr3l �l:Setting �l = B(l)=Cl and comparing this with (8) it may readily be veri�ed that any vectorof rates �r which correspond to a static regime for the 
uid model under consideration isa solution of the above maximization problem. Since such a solution is unique, by strictconcavity of the objective function, there exists only one such static rate allocation. 2Remark 1 . When the round trip times are negligible, the objective function in (4) reducesto PBr log�r, so that the static rates constitute the proportionally fair rate allocation withweights given by the window sizes.Remark 2 . When the round trip delays are non-negligible, their impact on the �r can beassessed from (4). Consider for instance a single link with unit capacity, shared by two routeswith associated round trip times Ti and window sizes Bi, i = 1; 2. If B1=T1 + B2=T2 � 1then one has �i = Bi=Ti. Otherwise, tedious but straightforward calculations yield�1 = 2B1T1 � T2 +B1 +B2 +p(T1 + T2 � B1 �B2)2 + 4(B1T2 +B2T1 � T1T2)and a similar expression holds for �2.3.3.2 Maximum throughputTheorem 1 relies on the fact that the scheduling policy is FIFO. However, when one usesanother policy instead, it turns out that an analogous result often holds, with a suitablymodi�ed objective function. This is illustrated by the following theorem.Theorem 2 . In the setting of Theorem 1, if each link implements per 
ow queueingwith Longest Queue First (LQF) policy among queues, in any static regime of the system'sbehaviour, the corresponding stationary rates are uniquely characterized as the solution tothe optimization problem maxXR Br�r � 12�2rTr (9)under the usual non-negativity and capacity constraints.Proof: Let Bl;r denote the amount of connection r packets backlogged at the accessof link l, in some candidate static regime and set B(l) = maxr3lBl;r. The policy is suchthat, when Bl;r < B(l), one necessarily has �r = 0. When Bl;r = B(l), on the other hand,11
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the policy puts a priori no constraint on the corresponding allocation �r. The Lagrangianassociated with (9) readsL =XR Br�r � 12�2rTr +Xl �l(Cl �Xr3l �r) +XR qr�r:At the optimum, we have �rTr = Br �Xl2r �l + qr:Identifying then the Lagrange multipliers �l with the maximal bu�er contents B(l), thisequation is exactly the conservation equation for packets and acknowledgements on router. Thus in any static regime the stationary rates �r solve (9); they therefore do not dependon the static regime under consideration, since (9), being a strictly concave maximizationproblem, has a unique solution, . 2Remark 3 . When the round trip delays Tr are negligible, these stationary rates tend tomaximize the sum of the throughputs �r, weighted by the window sizes Br.3.3.3 Max-min fairnessA particularly interesting allocation results from the use of Fair Queueing scheduling policy.We interpret Fair Queueing in the considered 
uid system to imply equal rates for allbacklogged 
ows, and lesser rates for non-backlogged 
ows.Theorem 3 . In the setting of Theorem 1, if at each link one implements a per 
owFair Queueing policy, for any static system behaviour regime, the corresponding stationaryrates are uniquely de�ned as the max-min fair shares of the network's resources with upperbounds Br=Tr on the �r (that is to say, the �r are the max-min fair rate shares in a networkidentical to the one under focus where each route r crosses an additional dedicated accesslink of capacity Br=Tr).Proof: Consider the conservation equation (5). It ensures that rate �r cannot exceedBr=Tr. It also implies that if �r < Br=Tr, there necessarily exists some link l 2 r, suchthat Bl;r > 0. For this link l, it then holds that Pr3l �r = Cl, since the associated server isnon-idling. Because service at each link is according to a Fair Queueing policy, it also holdsthat when Bl;r > 0, �r = maxr03lf�r0g.Summarizing, for all r 2 R, �r � Br=Tr, and�r < Br=Tr ) for some l 2 r;Xr03l�r0 = Cl and �r = maxr03l f�r0gEquivalently, these static rates are the max-min fair rate shares with an upper limit on �rof Br=Tr. 212
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Remark 4 . When every round trip time Tr is small when compared to the associatedwindow size Br, the bandwidth limits Br=Tr are ine�ective, so that the stationary rates arethe unweighted max-min fair rates. This di�ers from the situation encountered in Theo-rems 1 and 2, where the window sizes have a greater impact on the stationary rates, asthey translate into weights. In order to achieve stationary rates which correspond to theweighted max-min fair allocation, one should implement weighted fair queueing instead offair queueing at each link.3.3.4 Minimum potential delayTo realize an allocation minimizing the sum of the potential delays as considered in Section2.2.3, we must invent a rather peculiar queueing discipline.Theorem 4 . In the setting of Theorem 1, if at each link one implements per 
ow queueingwith service rate being shared between queues at the prorata of the square roots of thecorresponding bu�er contents, then for any static regime of the system's behaviour, theassociated stationary rates are uniquely characterized as the solution to the optimizationproblem minXR Br�r + Tr log�r (10)under the usual non negativity and capacity constraints, and in the domain �r � Br=Tr,r 2 R.Proof: The queueing policy at the prorata of the square roots of the bu�er contentsensures that for all l, in some static regime either link l is not saturated and the Bl;r arezero for all r 3 l, or it is saturated and then�r = pBl;rPr03lpBl;r0Cl; r 3 lEquivalently, Bl;r = �l�2rwhere �l =  Pr03lpBl;r0Cl !2Substituting this the conservation equation (5) yieldsBr = �rTr + �2rXl2r �l; r 2 R (11)Consider now the optimization problem (10). It is easily checked that the objective functionto be minimized is convex in the domain �r � Br=Tr (note that stationary rates necessarily13
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satisfy this constraint) so that the Kuhn-Tucker theorem applies, allowing the followingcharacterization of the optimal values �r:Br�2r � Tr�r �Xl2r �l = 0; r 2 Rwhere �l is the multiplier associated with the capacity constraint at link l, and is thus nonnegative, and necessarily zero if link l is not saturated. This expression is the same as (11),thus completing the proof of the theorem. 2Remark 5 . With negligible round trip times, the static regime depicted in the previoustheorem realizes the minimum of PRBr=�r, and is thus the minimum potential sojourntime allocation, with weights given by window sizes.4 Random search and deterministic increase/decrease algo-rithmsConsider now a generic stochastic algorithm of the Metropolis type where routes individuallyadjust their sending rate according to the evolution of a random process and the assumedinstantaneous knowledge of whether a proposed increase would lead to the saturation of anylink on its path. The derived algorithms are not proposed as a practical network solution.However, as is shown in this section, their analysis can be used to gain some insight intothe properties of deterministic algorithms such as TCP's additive increase/multiplicativedecrease congestion avoidance mechanism.4.1 Distributed random search algorithmsAssume each route r sends data at rate �r = ��r, where �r is integer-valued and 
uctuatesbetween 0 and nmax and � is a �xed bandwidth unit. The rates �r change in a Markovianfashion, jumping from n to n�1 with rate dn, and from n to n+1 with rate bn on conditionthat this will not lead to capacity being exceeded at some link. First, consider the auxiliaryprocess where each �r evolves in a Markovian fashion, jumping from n to n�1 at rate dn andfrom n to n+1 at rate bn, and this independently of the link status. Clearly, the individualprocesses �r are independent and the joint process has a reversible measure proportional tothe weights �0(n1; : : : ; nR) =YR b0b1 � � �bnr�1d1 � � �dnrwhere R = jRj. Now, the process under focus is obtained from this auxiliary process bysetting to zero those transition rates which would lead to a violation of some capacity14
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constraint. Again by standard results for reversible Markov processes, a stationary measurefor this process is then given by restricting �0 to the con�gurations which do not violateany capacity constraint. The stationary distribution of the �r is thus proportional to themeasure �(n1; : : : ; nR) =YR b0b1 � � �bnr�1d1 � � �dnr YL 1Pr3l �nr�Cl :Di�erent bandwidth sharing objectives can be satis�ed by an appropriate choice of bn anddn.4.1.1 Maximum throughputA �rst choice for the parameters bn and dn is to make them independent of n: bn � b,dn � d. The measure � then takes the form:� bd�PR nr YL 1Pr3l �nr�Cl :Thus, when b=d becomes large, the stationary distribution concentrates on those rate allo-cations which maximize the total throughput PR �r.4.1.2 Proportional fairnessA second choice consists in setting bn = (n+1)a, n � 0, and dn = (n� 1)a, n � 1, for someparameter a > 0. The measure � then readsexp aXR lognr YL 1Pr3l nr�Cl :Thus, when the parameter a increases, the stationary distribution concentrates on the rateallocations which maximize the sum of the logarithms of the rates, within the capacityconstraints, i.e., the distribution concentrates on the proportionally fair rate allocations.4.1.3 Max-min fairnessIn order to approximate max-min fair rate sharing we select bn and dn such that for alln � 1, bn�1=dn = expAM�n, where A and M are two positive parameters. We could, forinstance, set bn � expAM�n�1 and dn � 1. We then have�(n1; : : : ; nR) / expXR nrXi=1AM�i YL 1Pr3l �nr�Cl :Assume now thatM has been chosen su�ciently large so that, for any feasible rate allocation�nr, M > nr. Consider two feasible allocations f�nrgand f�mrg, such that for some r0,nr0 < mr0 , and for any other r, either nr � mr or mr > nr0 . In view of the de�nition of15
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max-min fairness, if f�mrg is the max-min fair rate allocation, for any other rate allocationf�nrg there exists such an r0. The ratio of probabilities �(m1; : : : ; mR)=�(n1; : : : ; nR) iseasily seen to be larger than expfAM�mr0 �R nmaxXi=mr0+1AM�igThus, when A tends to in�nity, this ratio also tends to in�nity. In other words, the proba-bility distribution � concentrates on the max-min fair rate allocation as A!1.4.1.4 Minimum potential delayIn order to approximate the minimum potential delay allocation, choose rates bn and dnsuch that bn�1dn = exp�a � 1n � 1n� 1� = exp an(n� 1) ; n > 1(take for instance dn � 1 and bn = exp a=[n(n+ 1)] for n � 1, and d1 = 0). The stationarymeasure � is then proportional toexp�aXR 1nr YL 1Pr3l �nr�Cland thus concentrates as a ! 1 on the feasible allocations which minimize the totalpotential delay P 1=�r.4.2 Deterministic general increase/general decrease algorithmsThe above random search framework allows us to derive more practical deterministic rateadjustments realizing particular bandwidth sharing objectives.4.2.1 Additive increase/multiplicative decreaseWe �rst devise rates such that the stochastic algorithm of the previous subsection mimics theadditive increase/multiplicative decrease mechanism. Our choice consists in setting dn = nand bn = n + �=�, where � is a positive constant. When upwards transitions are feasible,the drift for �r is constant and equal to �, producing a linear increase in the absence ofsaturation. On the other hand, when upwards transitions are impossible, the drift at somepoint x = n� is exactly �x, producing an exponential decay during saturation. In the limit� ! 0, the rates evolve continuously in a deterministic fashion according to this additiveincrease/multiplicative decrease mechanism.Consider two feasible rate vectors x = fxrg = f�nrg and y = fyrg = f�mrg. Weinvestigate the ratio �(x)=�(y) of the probabilities of each vector in the limit � ! 0. It is16
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easily seen that this ratio equalsexpXR 8<:(xr+�)=��1Xj=xr=�+1 log j � (yr+�)=��1Xj=yr=�+1 log j9=; :The value of this expression is not changed on adding log � to each term log j of both sumswhich may then be recognized as Riemann sums. The exponent is thus equivalent to:1� XR Z xr+�xr log xdx� Z yr+�yr log xdx:In the limit � ! 0, the distribution � thus concentrates on the feasible rate con�gurationwhich maximizes PR R xr+�xr log xdx. We may conclude that, for small �, this con�gurationis close to the proportionally fair rate allocation, because the objective function is thenequivalent to �PR log xr. These arguments add support to the belief that additive in-crease/multiplicative decrease algorithms realize a proportionally fair rate sharing, as hasalready been advanced by Kelly et al. [9], using a di�erent approach.4.2.2 General increase/general decrease.Consider now the following deterministic control policy: rate �r increases at speed fr(�r)in the absence of congestion and decreases at speed gr(�r) under congestion. The previousparagraph dealt with the case fr(x) � � and gr(x) � x. Applying the same method yieldsthe following result:Theorem 5 . The deterministic congestion avoidance algorithm with increase and decreasefunctions fr and gr for route r, r 2 R, has equilibrium points at those rate allocations atwhich the function XR Z �r0 log fr(u) + gr(u)gr(u) du (12)is maximal.Proof: Approximate this deterministic system behaviour by that of the stochasticalgorithm of the previous subsection, where �r jumps from �n to �(n+1) at rate (fr(�n) +gr(�n))=� in the absence of congestion, and jumps from �n to �(n � 1) at rate gr(�n)=�.When � tends to zero, the behaviour of this system is the same as that of the deterministicsystem under focus. Let us investigate the limiting behaviour of the stationary distribution� as � goes to zero. Given two feasible rate allocations f�rg, f�rg, we have�(�r)�(�r) = expXR d�r=�eXn=1 log fr(�n) + gr(�n)gr(�n) � d�r=�eXn=1 log fr(�n) + gr(�n)gr(�n)17
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As � ! 0, recognizing Riemann sums in the exponent in the right-hand side, the latter isequivalent to 1� XR Z �r�r log fr(u) + gr(u)gr(u) duso that the distribution � concentrates on those allocations for which PR R �r0 log[(fr(u) +gr(u))=gr(u)]du is maximal and the result of the Theorem follows. 2Remark 6 . If the objective function has a unique global maximum in the domain ofadmissible rate allocations and no other local maximum, one would expect the deterministicincrease/decrease algorithm to converge indeed to that maximising point. However if thereare multiple local maxima, it is likely that the deterministic mechanism will get trapped inany such local maximum.Theorem 5 may be used either to gain insight into the nature of the equilibria achievedby existing increase/decrease mechanisms, as in the previous paragraph, or conversely todesign new increase/decrease mechanisms with pre-speci�ed equilibrium properties. Letus illustrate this by devising functions f and g so that the associated equilibrium pointsminimize the total potential sojourn time PR 1=�r. The corresponding f and g should besuch that R �0 log[(f(u) + g(u))=g(u)]du= �1=u. Di�erentiating, we should therefore setf(u) + g(u) = g(u) exp 1u2 (13)There is a minor di�culty here: for such f and g the corresponding integral divergesat zero. However, it is easy to extend Theorem 5 to the case where some log[(fr(u) +gr(u))=gr(u)] fails to be integrable at zero, the result then being that the function maximisedat equilibrium has the derivative PR log[(fr(u) + gr(u))=gr(u)].Returning to (13), if we want to keep the multiplicative decrease half of the TCP congestionavoidance mechanism, we have g(u) = u, and thusf(u) = u�exp 1u2 � 1�For large values of u, we have f(u) � 1=u. Assuming that to set f(u) = 1=u instead of theabove does not signi�cantly change the system equilibrium, the following statement makessense: \logarithmic increase/multiplicative decrease mechanisms lead to rate shares thatminimize the total potential delay". Logarithmic increase could be realized by increasingthe window size on route r as follows: just after the window size has been increased to npackets, wait 2n time units before increasing it to n+ 1.One might wonder whether for appropriately chosen increase and decrease functions fand g the objective function is maximised at the max-min fair rate allocation. It turns out18
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that there do not exist functions which guarantee this property to hold for an arbitrarynetwork con�guration.5 ConclusionThe way network bandwidth is shared between contending 
ows has a signi�cant impact onuser perceived performance. We have considered a variety of bandwidth sharing objectivesincluding max-min fairness, proportional fairness and overall delay minimization. In thepresent work we have concentrated on the protocols and distributed algorithms used torealize these objectives for a given set of 
ows each having a �xed network route.The algorithms currently used in data networks generally aim to realize max-min sharingalthough precision in realizing this objective is often sacri�ced in the interest of simplicity.There is evidence that classical congestion indication algorithms based on additive increase/ multiplicative decrease tend to produce allocations which are proportionally fair ratherthan max-min fair. We have illustrated through a simple example how proportional fairnesstends to produce smaller allocations on routes using a large number of hops to the advantageof greater overall throughput. Minimizing potential delay as a sharing objective providesan intermediate solution between max-min and proportional fairness, penalizing long routesless severely than the latter.We have demonstrated that a simple �xed window 
ow control produces di�erent shar-ings depending on the scheduling discipline employed in network nodes. For example, FIFOtends to produce weighted proportional fairness, with weights given by the respective win-dow sizes, while fair queueing leads naturally to max-min fairness.We have approached the problem of designing a distributed algorithm realizing a givensharing objective through the study of a family of so-called Metropolis algorithms. The rateof individual 
ows varies randomly and independently of the rate of other 
ows except forthe condition that transitions to infeasible states (where link capacities would be exceeded)are barred. By appropriately choosing transition probabilities, it is possible to ensure thatthe random process concentrates on the rate allocation which realizes the required sharingobjective. More practical algorithms are derived as deterministic limits of the stochasticprocesses. In particular, it is shown by this means that the additive increase / multiplicativedecrease algorithm tends to realize proportional sharing, as already shown in [9]. In fact, asin the cited work, the sharing objective is realized under the (unrealistic) assumptions thatrate adjustments in response to congestion signals are immediate and that the multiplicativedecrease factor tends to one (i.e., rate 
uctuations occur in a very limited neighbourhoodof the congested state). 19
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To complete the study of how bandwidth sharing algorithms a�ect user-perceived per-formance, it is necessary to consider the impact of random changes in the number of 
owsin progress. Indeed, the bandwidth sharing algorithm has its own impact on this numbersince the transfer time of a given 
ow (i.e., a given document) clearly depends on the rateallocated to it. Preliminary investigations on the throughput performance of bandwidthsharing algorithms are reported in [10]. In this context, the natural rate sharing objectivewould be to minimize the number of transfers in progress and thus, by Little's law, mini-mize the mean transfer time. This is the motivation behind the potential delay minimizationbandwidth sharing introduced here.References[1] A. Arulambalam and X.Q. Chen, Allocating fair rates for available bit rate service inATM networks. IEEE Communications Magazine (1996) 92-100.[2] D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1987.[3] A. Charny, D. Clark and R. Jain, Congestion control with explicit rate indication.Proc. ICC '95, June 1995.[4] D.M. Chiu and R. Jain, Analysis of the increase and decrease algorithms for congestionavoidance in computer networks. Computer Networks and ISDN Systems 17 (1989) 1-14.[5] S. Floyd and K. Fall, Router mechanisms to support end-to-end congestion control.Lawrence Berkeley National Laboratory, Preprint (1997).[6] E. J. Hernandez-Valencia, L. Benmohamed, S. Chong and R. Nagarajan, Rate controlalgorithms for the ATM ABR service. Europ. Trans. Telecom. Vol 8 (1997), 7-20.[7] V. Jacobson, Congestion Avoidance and Control. In Proc. SIGCOMM '88, 314-329.[8] F. Kelly, Charging and rate control for elastic tra�c. Europ. Trans. Telecom. Vol 8(1997), 33-37.[9] F. Kelly, A. Maulloo and D. Tan, Rate control for communication networks: shadowprices, proportional fairness and stability. Journal of the Operational Research Society49 (1998).[10] J. Roberts and L. Massouli�e, Bandwidth sharing and admission control for elastictra�c, Submitted, 1998 20


